
Rapid Electronics Prototyping with Arduino

Introduction to Arduino

By

Benjamin Tyler, PE
PDH4Engineers

July 20, 2022

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Contents
Introduction.. 4

Author Introduction... 5

Suggested Course Materials.. 6

What is Arduino?... 7

Arduino Uno and Other Arduino Boards..9

Shields... 11

Arduino Language.. 12

Libraries... 13

Setting Up the Arduino IDE.. 14

Debugging... 17

Sketch 1: Digital I/O and Delays..18

Sketch 2: Button Debouncing..22

Sketch 3: Analog I/O.. 28

Sketch 4: Functions, Random Numbers, and Strings..32

Sketch 5: Interrupts.. 36

Sketch 6: I2C and External Libraries..38

Using an Arduino In Production...48

Conclusion... 50

Figure 1 Uno Board...10

Figure 2 Shields Add-On Boards...11

Figure 3 Arduino IDE..15

Figure 4 IDE Tool Bar...16

Figure 5 Debugger Screen...17

Figure 6 Button Debouncing Circuit..23

Figure 7 Button Debouncing Schematic https://www.arduino.cc/en/uploads/Tutorial/button_sch.png.....24

2

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 8 Analog Circuit...29

Figure 9 Analog Schematic..30

Figure 10 4-Pin, I2C Serial Bus Components..39

Figure 11 3-Pin, I2C Serial Bus Components..39

Figure 12 4-Pin, I2C Serial Bus Schematic..40

Figure 13 3-Pin, I2C Serial Bus Schematic..41

Figure 14 Library Window..43

3

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Introduction

This course is an introduction to Arduino, an ideal platform for rapid
development of programmable electronics. The course will discuss what
Arduino is, how to use it, who should use it, what kinds of things can be made
with it, and the practical limitations of the platform. We will walk through a
few sample projects to demonstrate core concepts of Arduino coding and
interfacing.

Arduino has simplified the software and hardware aspects of electronics
development. Writing code for Arduino has a lower learning curve than
traditional embedded systems development. The low level software and
hardware design work have mostly been done for users. There is a large
community built around Arduino, with a lot of open source software and
hardware that can be used "off the shelf." Consequently, Arduino enables an
engineer to take an idea to prototype much quicker.

This course is for engineers with at least a rudimentary grasp of
programming and electronics. You should be able to read a schematic
diagram and recognize elements like resistors and capacitors. Arduino is very
beginner friend, yet those with more software development experience will
not be held back.

4

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Author Introduction

This course has been produced by Benjamin Tyler, PE, who has over 15 years
designing embedded systems, data acquisition and automation systems, and
mobile apps.

5

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Suggested Course Materials

While this course can be completed without an Arduino board, you will get
much more out of this course if you follow along with one. I recommend the
Arduino Uno, as it is inexpensive and very capable. Furthermore, I
recommend you buy a kit that contains an Arduino board, sensors, and other
components. You can use an Arduino board other than the Uno, but you
might need to make minor changes to the project code. The Arduino
Leonardo board is a great alternative to the Uno, and one advantage it has
over the Uno is that it can function as a USB peripheral. There are a few
places you can buy an Arduino board or kit that includes the board:

 www.arduino.cc

 www.amazon.com

 www.sparkfun.com

 www.adafruit.com

 www.microcenter.com

Make sure to get the following components, or a kit that contains them:
 male-female and male-male jumper wires

 solderless breadboard

 100k Ohm potentiometer

 10k Ohm carbon film resistor

 220 Ohm resistor

 momentary button

 LED

 1602 LCD with I2C interface

 DHT11 temperature and humidity sensor

6

http://www.microcenter.com/
http://www.adafruit.com/
http://www.sparkfun.com/
http://www.amazon.com/
http://www.arduino.cc/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

What is Arduino?

Arduino is an open source platform for developing programmable electronics.
The Arduino boards have a microcontroller, which is a microprocessor with
integrated memory and peripherals. The Arduino platform consists of three
components: circuit boards, Arduino IDE (integrated development
environment), and code.

Arduino is also the name of the company in Italy that develops the Arduino
boards and the IDE. The founders of Arduino wanted to make building things
with microcontrollers easy enough to use to the point where non-technical
people like artists could quickly get code running on a board.

From the Arduino.cc website:

Arduino is an open-source electronics platform based on easy-
to-use hardware and software. Arduino boards are able to
read inputs - light on a sensor, a finger on a button, or a
Twitter message - and turn it into an output - activating a
motor, turning on an LED, publishing something online. You
can tell your board what to do by sending a set of instructions
to the microcontroller on the board.

Arduino boards come with everything they need to run code,
and allow other boards that add functionality. In addition to
the microcontroller, each Arduino board typically has a USB to
serial converter, power regulator, resistors and capacitors,
and pin headers or solder pads that provide access to I/O
pins.

The microcontroller contains a microprocessor, random
access memory (RAM), program memory(NOR flash memory,
OTP ROM, or ferroelectric RAM), and programmable input and
output peripherals. Common peripherals are digital I/O pins,
serial ports, analog to digital converters (A/D), pulse width
modulation outputs (PWM), comparators, and others.

The microcontroller is pre-programmed with Arduino
bootloader firmware. The bootloader allows the board to be
programmed via serial port, so a dedicated hardware
programmer is unnecessary.

7

https://www.arduino.cc/en/Main/Products

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Arduino has become very popular due to a few important factors.

1 The boards are inexpensive and do not require specialized hardware.
The barrier to entry used to be higher for embedded development, because a
chip programmer or an in-circuit debugger had to be purchased in addition to
the development board. One minor drawback is that Arduino boards typically
do not have dedicated hardware for debugging, like JTAG, so debugging is
done by printing to the serial console.

2 Writing code for Arduino is easy. Arduino code hides all the details
particular to each microcontroller's architecture, so the same code will run on
different microcontrollers with little or no modifications. This greatly simplifies
coding for users. Code is written in the Arduino IDE, and the IDE runs on
Windows, Mac, Linux, and the web. This makes coding for Arduino available
to everybody with a computer.

3 There is a large ecosystem of expansion boards, called "shields."
Shields plug in to Arduino boards in order to add capabilities like ethernet,
stepper motor drivers, temperature and humidity sensors, wifi, battery
charging, OLED screens, and more.

4 The hardware designs are open source, so anyone can manufacture
their own Arduino-compatible boards. The circuit schematics and board
layout files are available for you to download and use.

5 There is a ton of published open source projects, with code and
schematics included. You can repurpose existing designs for your own needs.

8

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Arduino Uno and Other Arduino Boards

For this class we use the Arduino Uno, although any Arduino board is suitable.
There are many variants of Arduino boards available. They come with
different microcontrollers and configurations for specialized purposes. Some
are specialized for IoT (internet of things), wearables (electronics embedded
in clothing), motor control, or a multitude of other purposes. All the official
Arduino board designs are fully open sourced.

The Uno has the following features:
 Processor: ATMega328P microcontroller made by Microchip

 Flash memory: 32KB

 RAM: 2KB of SRAM

 Digital I/O: 14 digital I/O pins, six of which provide PWM output

 Analog inputs: 10 bit analog inputs, 0 to 5V

 Clock speed: 16 MHz crystal oscillator (some clones are clocked at
12 MHz)

 Operating Voltage: 5V

 EEPROM: 12KB

 Input Voltage: 7 to 12V in the DC power jack

While the specs of the ATMega32P might not seem very impressive, there is a
lot you can accomplish with only 2KB of RAM. Keep in mind that it is powered
by 5V, and 5V is less common these days with microcontrollers. Make sure
that any sensors or devices that you connect to the Uno are 5V-tolerant,
otherwise you will need to use level shifting between devices. Other Arduino
boards run at 3.3V or other voltages.

More modern Arduino boards often have an Arm core, a powerful 32-bit
microprocessor, or even other powerful 32-bit or 64-bit processors. Arduino
programs, or sketches, are mostly portable between architectures. The newer
microprocessors have more memory, higher clocks, efficient low power
modes, and sometimes have specialized instructions for signal processing or
AI. These features open a whole new world of applications for you to develop.

To get an idea of all the features of the ATMega or whatever microcontroller
you choose, take a look at the datasheet. Datasheets tend to make for dense
reading, but they are indispensable. Microchip tends to have decent
documentation for their chips. The datasheet for the ATMega328P is here:
https://www.microchip.com/wwwproducts/en/ATmega328P

9

https://www.microchip.com/wwwproducts/en/ATmega328P

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 1 Uno Board

Many of the I/O pins are multiplexed with different functionalities like digital,
analog, and serial. The pins are configured in code to act as inputs or outputs
and digital or analog. The digital I/O pins are tristate logic. That means that
the pins can output high or low logic voltages, and in input mode they are
high impedance.

The analog inputs measure continuous voltage signals. The A/D converter for
on the ATMega328P is 10 bits, so the A/D produces an integer between 0 and
1023 that linearly corresponds with an analog signal between 0V and 5V. Pins
labeled with tilde (~) can be used as analog output. These pins actually
output PWM (pulse width modulation). A low pass RC filter can convert PWM
to a true analog signal if necessary.

The I2C serial interface uses two of the analog pins, A4 and A5. Two digital
pins, D0 and D1, also serve as the RX and TX pins on the UART serial
interface.

See the Uno schematic here:
https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

10

https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Note
There are many Arduino boards to suit different uses. They are all
programmed in the same way, but have different sizes, costs, and
peripherals. See here for a list of official Arduino boards:
https://docs.arduino.cc/

Shields

Shields are add on boards that plug into Arduinos and provide more
functionality like GPS, Bluetooth, ethernet, stepper motor drivers, and more.
Shields are designed to plug into the header sockets on the Arduino board.
Many shields pass through the signals, so it is possible to stack shields on the
Arduino. Make sure the shields and particular Arduino board are compatible-
some might have different pin assignments. Here is a sample of shields from
Sparkfun Electronics:

Figure 2 Shields Add-On Boards

Note
For an extensive list of shields along with compatibility details, see
shieldlist.org .

11

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Arduino Language

Arduino does not have its own language, although people commonly refer to
the "Arduino language." The language used is in fact C++ and is compiled
with a C++ compiler, though the Arduino core library provides many user
friendly functions that simplify the coding experience. You are free to use
object oriented programming (OOP) style coding as in C++, procedural style
found in C, or a mix of the two styles.

If you need a quick refresher for what OOP or procedural mean, see:
https://en.wikipedia.org/wiki/Procedural_programming

https://en.wikipedia.org/wiki/Object-oriented_programming

Arduino provides high level, easy to use functions for reading and writing I/O,
math, time delays, serial communication, bit manipulation, and character
manipulation. We will use many of these functions in the following projects.

The core library provides an abstraction layer that hides the details of the
underlying hardware. That means you do not have to port your code to use
different Arduino boards or microprocessors- it has all been done for you.
Arduino IDE automatically uses the correct core library when a particular
board is selected.

See here for an overview of the functions included in the core library:
https://www.arduino.cc/reference/en/

An Arduino source file or application is also known as a “sketch.” The sketch
has two main components: the setup() function and the loop(). All the
configuration is done in setup(), as well as any code that only needs to run
once. The rest of the code goes into loop().

12

https://www.arduino.cc/reference/en/
https://en.wikipedia.org/wiki/Procedural_programming

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Libraries

Libraries add functionality to Arduino. In addition to the main Arduino core
library, Arduino IDE comes bundled other libraries. To add a library to a
sketch, used the include command followed by the name of the library, like
this:

#include <Wire.h>

In the above example, the sketch can use the functions defined in the Wire
library, which is for I2C serial communication. The includes go at the top of
the sketch.

Some other standard libraries include:
 EEPROM - reading and writing to "permanent" storage. Be aware that not all

microcontrollers have real EEPROM, so this library will write to flash. Flash
memory has fewer write cycles than EEPROM, so be aware what kind of
memory you are writing to.

 Ethernet - for connecting to the internet using the Arduino Ethernet Shield,
Arduino Ethernet Shield 2 and Arduino Leonardo ETH

 Firmata - for communicating with applications on the computer using a
standard serial protocol

 GSM - for connecting to a GSM/GRPS network with the GSM shield

 LiquidCrystal - for controlling liquid crystal displays (LCDs)

 SD - for reading and writing SD cards

 Servo - for controlling servo motors

 SPI - for communicating with devices using the Serial Peripheral Interface
(SPI) Bus

 SoftwareSerial - for serial communication on any digital pins

 Stepper - for controlling stepper motors

 TFT - for drawing text , images, and shapes on the Arduino TFT screen

 WiFi - for connecting to the internet using the Arduino WiFi shield

You can add more libraries to Arduino IDE by downloading existing libraries or
writing your own. In Arduino IDE, select Sketch > Include Library. To use the
Library Manager, select Tools > Manage Libraries. Alternatively, you can
manually copy the library to the arduino/libraries directory.

For more about libraries see:
https://www.arduino.cc/en/Reference/Libraries

13

https://www.arduino.cc/en/Reference/Libraries

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Setting Up the Arduino IDE

The Arduino IDE has a text editor where you can write your sketches, and it
lets you upload sketches to the Arduino board. The Arduino IDE editor has
several helpful features:

 syntax highlighting

 many code examples

 reference and troubleshooting documentation

 an output pane for viewing the build process and memory usage of sketches

 a serial monitor that enables two way communication with the board

 a serial plotter for viewing board output in graphical form

14

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Download the Arduino IDE for your system here:
https://www.arduino.cc/en/Main/Software

Figure 3 Arduino IDE

To avoid confusion, this course will use the installed version of the Arduino
IDE, not the web editor.

After installing, connect the Arduino board to your computer via USB. In the
IDE, go to Tools > Board, and select Arduino/Genuino Uno (or whatever board
you are using). Next select the communications port the Arduino is using. Go
to Tools > Ports, and select the right port. If you are on Linux, add your user
to the dialout group. If you have a generic Arduino board, you might need to
install a serial driver, but most likely it will just work.

15

https://www.arduino.cc/en/Main/Software

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

To see some example projects that you can run for your board, go to File >
Examples.

Two buttons in the tool bar at the top of each sketch are very useful. The
check button compiles the sketch, and the right arrow button uploads the
sketch to the board. Output from the build and upload processes show in the
bottom pane. Any bugs or errors will appear there, too.

Figure 4 IDE Tool Bar

16

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Debugging

Debugging with Arduino is done by printing to the serial monitor. To enable
the serial monitor, click Tools > Serial Monitor.

Figure 5 Debugger Screen

It is good practice to put some print statements throughout the code, so you
can track where the program is currently executing. Be aware that printing to
serial is slow, so too much printing can cause timing issues if timing needs to
be tight.

Keep in mind that the serial monitor might tie up the same serial port you
need to use to upload code to the chip. If you upload code and there is an
error, make sure to close the Serial Monitor, and then uploading the code
should work.

17

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 1: Digital I/O and Delays

This sketch introduces two aspects of Arduino, digital I/O and timing. The
digital pins can drive things like LEDs and transistors or read the state of
switches. To use a digital I/O pin, the pin first needs to be initialized to be an
input or output. Arduino boards have the pins numbered, so use the pin's
number when initializing the pin. Arduino has some constants already defined
for some boards. For example, the LED_BUILTIN is pin 13. The delay functions
let you do create timed sequences. We will create a Morse code blinker with a
digital output and delays.

Here are some Arduino functions related to serial communication, digital
output, and delays:

 Serial.begin(9600) initializes the serial port and sets the Baud rate at 9600.

 Serial.println(text) prints text to the serial port. You can see the printed
text in the Serial Monitor.

 pinMode(pin, OUTPUT) initializes the pin as an output. Other available
values for mode are INPUT and INPUT_PULLUP. INPUT_PULLUP enables the
ATMega's internal pullup, so an external pullup resistor is not necessary.

 digitalWrite(pin, HIGH/LOW) outputs HIGH or LOW to a pin.

 delay(value) pauses the sketch for the given value of milliseconds. Be
aware that the delay() function does not let other code run at the same time.

 delayMicroseconds(value) does the same thing as delay() but delays the
sketch for the given value of microseconds.

First let’s demonstrate how we can use the above commands to make the
Uno’s built-in LED toggle every second. A pin, defined as a LED_BUILTIN is
initialized as an output. Then every second the pins state changes, and loop()
repeats the state changes.

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.println(“Hello World!”); // the usual first program
}

/* obligatory hardware version of
Hello World */

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000);
}

18

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Also note that I demonstrated the two ways to leave comments in code, the
single line comment // and the multiline comment bookended with /* */.

Let's examine a more interesting sketch that blinks Morse code for "hello
word". Morse code is used for transmitting text messages with the
characters encoded as dots and dashes (aka dits and dahs). The basic unit of
time is the duration of the dot. The duration of a dash is equivalent to three
dots, the delay between letters is three dots, and the delay between words is
seven dots. There is a delay equivalent to a dot after each dot or dash within
a letter.

19

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

This sketch uses the built-in LED, so no external circuit is necessary. Copy
and Paste or type the following code into the text editor of Arduino IDE.

/*
Morse Code Blinker
*/
/* 1 */
#define DOT (200) // delay for dot in milliseconds
#define DASH (3 * DOT) // delay for dash
#define SPACE (DOT + 1) //delay after each dot or dash, see note 6
#define LSPACE (4 * SPACE) // delay for space between letters
#define WSPACE (7 * SPACE)// delay for space between words

/* 2 */
const int morse[] = {DOT, SPACE, DOT, SPACE, DOT, SPACE, DOT,
LSPACE, DOT, LSPACE, DOT, SPACE, DASH, SPACE, DOT, SPACE, DOT,
LSPACE, DOT, SPACE, DASH, SPACE, DOT, SPACE, DOT, LSPACE, DASH,
SPACE, DASH, SPACE, DASH, WSPACE, DOT, SPACE, DASH, SPACE, DASH,
LSPACE, DASH, SPACE, DASH, SPACE, DASH, LSPACE, DOT, SPACE, DASH,
SPACE, DOT, LSPACE, DOT, SPACE, DASH, SPACE, DOT, SPACE, DOT,
LSPACE, DASH, SPACE, DOT, SPACE, DOT, WSPACE}; // HELLO_WORLD_

const int length = sizeof(morse)/sizeof(morse[0]);

int i = 0;

/* 3 */
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.begin(9600);
 Serial.println("HELLO WORLD in Morse code!");
}

/* 4 */
void loop() {
 if (morse[i] == DOT || morse[i] == DASH) {
 digitalWrite(LED_BUILTIN, HIGH);
 } else {
 digitalWrite(LED_BUILTIN, LOW);
 }

 delay(morse[i]);
/* 5 */
 i++;
 if (i == length) {
 i = 0;
 Serial.println("flashing HELLO WORLD again");
 }
} /* end */

A sketch has two function blocks, setup() and loop(). Setup() runs once at the
beginning. This is where code for configuring peripherals goes. Loop() runs
over and over unless a stop condition is reached.

20

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Let's examine what is happening in this sketch.

1 The Morse code for DOTs, DASHes, and spaces are defined with preprocessor
macros. The #define macros are evaluated at compile time, not run time, and
the compiler substitutes their values throughout the source code.

2 The Morse code for "hello world" is encoded as an array of integers in morse[].
Since you can stick any arbitrary message into morse[], we need to calculate its
length. Determining the length of the array is done with a common C trick: take
the number of bytes used by the array divided by the number of bytes used by a
single array element. Think of it as sizeof(array of ints)/sizeof(int). Remember,
the definition of what an int, or integer, depends on the architecture. In this case
we are using an 8-bit microcontroller, so ints are 8 bits each. It should be noted
that it would be better to specify what kind of int we are using, signed or
unsigned, long or long long if necessary, but for the sake of demonstration we
are playing a bit fast and easy by just using a plain int.

6 An integer variable i stores how many times loop() has run. Be aware that the
variable will roll over if you loop through the code more times than the int can
hold.

7 setup() initializes the LED_BUILTIN pin to be an output. Then it initializes the
serial port and outputs a message. LED_BUILTIN is a constant defined by which
board you’ve selected in the IDE.

8 loop() is responsible for blinking the LED. First it looks to see if the current
element of morse[] is a space. If not, it turns on the LED for the duration of a dot
or dash. If the current element is a space, the LED is turned off for the duration
of a space. The delay(X) function stops the execution for X number of
milliseconds. Keep in mind that delay(), at least on the Uno, takes the system
clock and divides it down to a time of approximately 1ms, so it isn’t very precise.

9 i is incremented. If i is equal to the length of the morse array, it is reset and a
message prints.

10 DOT and SPACE are supposed to be the same length, but for the sake of
simplicity 1 is added to SPACE to differentiate it from DOT.

A cleaner implementation of this code would probably use data structures
like enums and structs to store the Morse encodings, but I tried to keep
things simple.

Using a digital output and delays, we have blinked an LED to send a
message. The functions in this sketch could be used to make other useful
things like timer relays, lighting controls, infrared remote controls, or
anything that uses a timed sequence of events.

For more information about Morse code:
https://en.wikipedia.org/wiki/Morse_code

21

https://en.wikipedia.org/wiki/Morse_code

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 2: Button Debouncing

Buttons are electromechanical devices, and whenever a button is pressed
there is some bouncing for a short time. Bouncing can cause a button press
to register several times, so the button needs to be debounced. Other
switches and relays typically have a rating for bounce time during which
switch closures need to be ignored. For this sketch we will debounce in
software, but oftentimes using some form of hardware debouncing is
appropriate.

The Arduino functions related to digital input and timing are:
 digitalRead(pin) reads the logic level of the pin, HIGH or LOW.

 millis() gives the number of milliseconds since sketch began running. The
value overflows after about 50 days for a board with a 16 MHz crystal..

 micros() gives the number the of microseconds since the sketch began
running. The value overflows after about 70 minutes for a board with a 16
MHz crystal.

For this sketch you will need:
 momentary button

 10k Ohm resistor

 breadboard

 male-male jumper wires (22 gauge solid core wire works, too), preferably in
red, black, and blue colors

22

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Wire the components as shown:

Figure 6 Button Debouncing Circuit

23

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 7 Button Debouncing Schematic
https://www.arduino.cc/en/uploads/Tutorial/button_sch.png

Open the Debounce example sketch. It is at File > Examples > 02. Digital >
Debounce. The sketch is included here with annotations.

/*
 Debounce

Each time the input pin goes from LOW to HIGH (e.g. because of a
push-button press), the output pin is toggled from LOW to HIGH or
HIGH to LOW. There's a minimum delay between toggles to debounce the
circuit (i.e. to ignore noise).

 The circuit:

 LED attached from pin 13 to ground

 pushbutton attached from pin 2 to +5V

 10k Ohm resistor attached from pin 2 to ground

Note

24

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

On most Arduino boards, there is already an LED on the board
connected to pin 13, so you don't need any extra components for this
example.

 created 21 Nov 2006 by David A. Mellis, modified 30 Aug 2011by
Limor Fried

modified 28 Dec 2012 by Mike Walters

modified 30 Aug 2016 by Arturo Guadalupi

 This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/Debounce
*/
/* 1 */
// constants won't change. They're used here to set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// Variables will change:
int ledState = HIGH; // the current state of the output pin
int buttonState; // the current reading from the input
pin
int lastButtonState = LOW; // the previous reading from the input
pin

// the following variables are unsigned longs because the time,
measured in
// milliseconds, will quickly become a bigger number than can be
stored in an int.
unsigned long lastDebounceTime = 0; // the last time the output pin
was toggled
unsigned long debounceDelay = 50; // the debounce time; increase
if the output flickers

/* 2 */
void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);

 // set initial LED state
 digitalWrite(ledPin, ledState);
}

/* 3 */
void loop() {
 // read the state of the switch into a local variable:
 int reading = digitalRead(buttonPin);

 // check to see if you just pressed the button
 // (i.e. the input went from LOW to HIGH), and you've waited long
enough
 // since the last press to ignore any noise:

 // If the switch changed, due to noise or pressing:
 if (reading != lastButtonState) {
 // reset the debouncing timer

25

http://www.arduino.cc/en/Tutorial/Debounce

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

 lastDebounceTime = millis();
 }
/* 4 */
 if ((millis() - lastDebounceTime) > debounceDelay) {
 // whatever the reading is at, it's been there for longer than
the debounce
 // delay, so take it as the actual current state:

 // if the button state has changed:
 if (reading != buttonState) {
 buttonState = reading;

 // only toggle the LED if the new button state is HIGH
 if (buttonState == HIGH) {
 ledState = !ledState;
 }
 }
 }
/* 5 */
 // set the LED:
 digitalWrite(ledPin, ledState);

 // save the reading. Next time through the loop, it'll be the
lastButtonState:
 lastButtonState = reading;
} /* end */

Let's examine what is happening in this sketch.

1 Constants and variables are initialized here. The important
things to notice here is that there are variables to hold the button
state, store the time of the last state change, and set the debounce
delay. The debounce delay should be just long enough to avoid
erroneous button presses. The initial button state is LOW, not pressed.
The LED is on.

2 Setup() initializes the input and output pins, as well as driving
the output high.

3 Each loop reads the state of the input pin. This is known as
polling. If the new reading of the pin's state does not match the
previous state, the debouncing timer is reset.

4 While waiting for the debounce delay, the button state is
ignored. Once the system has waited for the bounce delay, button
state is then compared with the current reading. If a button state
change is detected, the button state is set to the reading. If the button
state is HIGH, meaning the button has been depressed, then the LED is
toggled.

5 Sets the output pin and stores the previous state of the button.

26

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

The method shown in this sketch is better than simply using a delay() after a
state change is detected, because a delay() blocks other work from being
done. Try reducing the debounceDelay variable to a value less than 50. At
some point you will observe the LED flicker. If you were to look at the voltage
across the switch with an oscilloscope, you could observe how long the
bouncing lasts.

Now that you know how to debounce buttons, you can incorporate buttons
and other electromechanical switches into your designs.

For a comprehensive guide to debouncing:
http://www.ganssle.com/debouncing.htm

27

http://www.ganssle.com/debouncing.htm

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 3: Analog I/O

In this sketch we will read and write analog values. Microcontrollers in
Arduino boards come with an analog to digital converter (A/D) to read analog
voltages between 0V and the power supply voltage, usually either 3.3V or 5V.
The Uno comes with a 10 bit A/D (analog to digital converter) and six
available analog inputs. The Uno's A/D requires about 100 microseconds to
take a sample, resulting in max sampling rate of 10 kHz. The
microcontrollers in Arduino boards typical have analog comparators as well.
The comparators return a true or false depending if the input voltage is
above or below a reference voltage. We won’t discuss comparators further
here, but they are available in case you have a need for them.

Analog output is achieved with PWM (pulse width modulation). While PWM is
not true analog, it is a close enough approximation for many applications.
The Uno has an 8 bit PWM, so a writing a value of 0 to the PWM produces a
square wave with a 0% duty cycle (off), and a value of 255 produces a square
wave with 100% duty cycle (on). The frequency of each PWM pin is
determined by an internal counter and a prescaler that divides the base
frequency. Pins 5 and 6 use timer0, which runs at base frequency of 62500
Hz. The base frequency is scaled down to about 1000 Hz for pins 5 and 6.
Pins 9 and 10 use timer1, and pins 2 and 11 use timer2. timer1 and timer2
have a base frequency of 31250 Hz, which is divided down to about 500 Hz.
These slow PWM frequencies are suitable for things like blinking an LED, but
not for other things like switching mode power supplies. See the note at the
end of this lesson about changing the PWM frequencies. Higher end
microcontrollers than the ATMega have more PWM options.

Let's examine the functions related to analog. For most applications, using
only the first two functions with the default settings is sufficient.

 analogRead(pin) - reads the analog voltage at the pin, which in the case of
the Uno is a 10 bit integer between 0 and 1023.

 analogWrite(pin, value) - outputs a PWM wave on pin. The output value is
between 0 to 255, corresponding to 0% to 100% duty cycle.

 analogReference() - sets the top of the input range. Defaults to 5V for the
Uno. See

https://www.arduino.cc/reference/en/language/functions/
analog-io/analogreference/

 analogReadResolution(value) - for Arduinos with more than 10 bits A/D
resolution. If the Arduino has a 16 bit A/D, set value to 16, and analogRead()
will return a value between 0 and 4095. The input value can be up to 32.

 analogWriteResolution(value) - for Arduinos with more than 8 bits PWM
resolution.

28

https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

For this sketch, we need the following parts:
 100k Ohm potentiometer

 LED

 220 Ohm resistor

Wire the circuit as shown here:

Figure 8 Analog Circuit

29

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

This is the circuit schematic:

Figure 9 Analog Schematic

Type or copy and paste the following code into Arduino IDE.
/*
 * Dimmer using Analog Input and PWM
 */

/* 1 */
const int led = 11;
const int potentiometer = A0;
int reading = 0;
int pwm = 0;

void setup() {
 pinMode(led, OUTPUT);
}

/* 2 */
void loop() {
 reading = analogRead(potentiometer);
 Serial.println(reading);
/* 3 */
 pwm = map(reading, 0, 1023, 0, 255);
 analogWrite(led, pwm);
 delay(20);
}/* end */

1 Pins for LED and potentiometer are set. Pin mode for LED pin is
set.

30

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

11 Each loop, the A/D is read and then printed to the serial console.

12 The value is then scaled with the map() function to between 0 and 255. The
value is then fed to PWM output. The LED brightness is determined by the PWM
duty cycle. Finally, the loop delays for 20ms.

In case more than six PWM outputs are need, bit-banging PWM is an option.
Any digital pin can bit-bang PWM. Let's look at an example.

/*
 * Bit-banging Pulse Width Modulation Example
 */
const int pin = 7;
const int period = 1000; // period is 1000us, so frequency is 1kHz
const int onTime = 200; // arbitrary value for demonstration

void setup() {
 pinMode(pin, OUTPUT);
}

void loop() {
 digitalWrite(pin, HIGH);
 delayMicroseconds(onTime);
 digitalWrite(pin, LOW);
 delayMicroseconds(period - onTime);
} /* end */

In this example, pin 7 is toggled at 1KHz with about 20% duty cycle (200
microseconds on, 800 off for a total of 1000). This should only be used as a
conceptual example as the delayMicrosecond() calls will block other work
from being done.

In review, reading and writing analog values is easy with Arduino, because all
the low level configuration has already been done. By default, the Uno offers
slow PWM frequencies. There is more about PWM and how to change the
frequencies at the following links.

https://playground.arduino.cc/Code/PwmFrequency/

https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

31

https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM
https://playground.arduino.cc/Code/PwmFrequency/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 4: Functions, Random Numbers, and Strings

In this lesson we review how to use functions and generate random numbers.
In addition to the standard setup() and loop() functions, you can write other
functions in sketches. Code is much easier to read and is better organized if
all the code is not put in setup() and loop(). The sketch in this lesson uses
function calls and random numbers to implement a simple guessing game.

The functions need to follow the C/C++ format:
returnType functionName(type arg1, type arg2, ...) {
 //code body;
 return value; //if the function's return type is void, nothing
is returned
}

Functions can appear before or after setup() and loop(). Functions can be
called before they are defined, which is not the case in C and C++. The
return type can be anything that is also available in C++: int, float, bool,
string, and others. If the function does not return a value, void is used. The
function name should make its purpose clear

See here for more about data types available with Arduino:
https://www.arduino.cc/reference/en/#variables

Here is an example of using a function:
/*
Function Example
*/
void setup() {
 Serial.begin(9600);
}

void loop() {
 int duration = exampleFunction1();
 delay(duration);
 exampleFunction2();
}

int exampleFunction1() {
 return 1000;
}

void exampleFunction2() {
 Serial.println("This is a test");
} /* end */

32

https://www.arduino.cc/reference/en/#variables

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Oftentimes we need to use random numbers. Arduino provides random() and
randomSeed(). randomSeed() initializes the pseudo random number
generator. In order to get a different sequence of generated numbers each
time the sketch runs, seed the generator with a random input like
analogRead() on a floating pin, like this:

randomSeed(analogRead(0));

Then to get a random number call random(). To get an integer value between
0 and MAX - 1, call

int randomNumber = random(MAX);

Note
C and C++ are zero indexed, so counting starts with zero. The range goes
from zero inclusive to MAX exclusive, which explains why we subtract one
from MAX. Off-by-one bugs often occur when zero indexing is not considered.

To get an integer between a range of MIN and MAX - 1, call
int randomNumber = random(MIN, MAX);

Let’s examine how to use strings briefly. First we examine how to analyze
individual characters, then how to use the C++ String type to create and
manipulate strings. In this lesson’s sketch, we need the Aduino board to
process user input. To do this, we can use the following Arduino functions.
Remember, char is an 8-bit variable type used to hold an ASCII character.

 isAlpha(char) – returns true if char is a letter.

 isDigit(char) – returns true if char is a digit 0 – 9.

 isSpace(char) – returns true if char is a space.

 isPunct(char) – returns true if char is a punctuation mark.

It’s important to distinguish C++ string objects from char and C-style arrays
of chars. With Arduino it is generally easier to use C++ string objects. For
simplicity, we treat an indivual characters as a char type and convert the
char to a C++ String object whenever we need to manipulate it. Now let’s
create a String object using some of its common constructors.

String string1 = “This is a string”; // creates a String constant
String string2 = String(‘S’); // creates a String from a char
String string3 = String(123); // creates string from integer

Using C++ String objects makes string manipulation easier. To concatenate
two strings, use the + operator like this:

String string4 = string1 + “, fantastic”; // string4 is “This is a
string, fantastic”

33

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

We can use the comparison operators ==, !=, >, <, >=, and <= to compare
two strings, which is useful for sorting and alphabetizing strings.

if(string1 == string2) Serial.println(“The strings are equal!”);

The toInt() function lets you convert the String representation of an integer to
an integer.

int number = string3.toInt();

Now let's demonstrate using functions with random() and strings. We will
make a guessing game where the user chooses a number between 1 and 5.
Open the Serial Monitor to view sketch output and to send keystrokes.

/*
Guessing Game
*/
/* 1 */
void setup() {
 Serial.begin(9600);
 randomSeed(analogRead(0));
}

void loop() {
 Serial.println("Choose a number between 1 and 5");
/* 2 */
 int number = getRandom();
 while(!Serial.available()) ;
 char rawGuess = Serial.read();

 int guess = analyzeInput(rawGuess); //see note 6

/* 3 */
 if ((guess >= 1) && (guess <= 5)) {
 Serial.println("You chose: " + String(guess));
 } else {
 Serial.println("Character not between 1 and 5");
 return;
 }

/* 4 */
 Serial.println("Arduino chose: " + String(number));
 if (number == guess) {
 Serial.println("You got it!");
 } else {
 Serial.println("Bad luck! Try again.");
 }
}

/* 5 */
int getRandom() {
 return random(1, 6);
} /* end */

34

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

/* 6 */
int analyzeInput(char input) {
 if(isAlpha(input)){
 Serial.println("Input is a letter");
 return -1;
 }
 if(isSpace(input)){
 Serial.println("Input is a space");
 return -1;
 }
 if(isDigit(input)){
 return String(input).toInt();
 }
 return -1;
}

Let's review what is happening in this sketch.

1 The serial port is initialized, and the random number generator is
seeded with a reading from the A/D converter.

2 The getRandom() function is called and returns an integer.
Then the sketch waits to receive a character from the serial port that
the user typed. The value is converted from a char to an int by
subtracting the char '0'. If you look at a table of ASCII values, ‘0’ has a
value of 48 or 0x30. So, subtracting ‘0’ from itself is 0, ‘1’-’0’ is 1, etc.

3 Check if the input is between 1 and 5. If not, skip to the next
loop by calling return. The guess value is converted to a string with
String() and then concatenated with the preceding text.

4 The guess valued is compared with the machine generated
random number. If they match, a congratulatory message is printed to
the Serial Monitor.

5 getRandom() calls random() and returns an integer. The
user’s input is read from Serial Monitor.

6 The user input is tested to see if it is valid. If it is valid, it is
converted to an integer and returned.

This sketch covered several key concepts: using functions other than setup()
and loop(), how to use random(), how to skip to the next iteration of loop(),
and reading serial input.

35

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 5: Interrupts

In the button debouncing sketch above, we used polling to detect when the
button state changes. Reading an input with a loop wastes processor time.
Interrupts provide a more responsive way to detect a button press or sensor
output. Interrupts tell the microcontroller to stop what it is doing and to
execute code in the interrupt service routine (ISR).

The Uno has two available interrupts on pins 2 and 3. Other Arduino boards
have more interrupts available.

To use an interrupt first attach the interrupt to a pin:
attachInterrupt(digitalPinToInterrupt(pin), ISR, TRIGGER);

attachInterrupt() does not take a pin number directly; it needs the number
of an interrupt. digitalPinToInterrupt() gets the number of an interrupt
associated with a pin. The ISR is the name of the function acting as an
interrupt handler. Do not put a lot of code in the ISR. It needs to be fast and
not block the rest of the program.

The ISR can trigger on four possible events:
 LOW triggers when the pin is low.

 RISING triggers when the pin transitions from low to high.

 FALLING triggers when the pin transitions from high to low.

 CHANGE triggers any time the pin's value changes.

36

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

 Use the same circuit as in the Debounce sketch above. Now let's use an
interrupt. Type or copy and paste the following code into Arduino IDE.

/*
Interrupt
*/
/* 1 */
const int interruptPin = 2;
int ledState = LOW; // the current state of the output
pin

/* 2 */
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(interruptPin, INPUT);
 attachInterrupt(digitalPinToInterrupt(interruptPin), handler,
HIGH);
}

/* 3 */
loop() {
 digitalWrite(LED_BUILTIN, ledState);
}

/* 4 */
void handler() {
 ledState = !ledState;
} /* end */

1First the input pin and the initial LED state are set.

2Pins are set as output and input. An interrupt is attached to pin 2.

3The ledState, HIGH or LOW, is written to the pin.

4Every time the button is pushed, the handler() function runs. The LED
output is toggled.

In case you ever need to run critical code that cannot be interrupted, use
nointerrupts(). This disables interrupts. To re-enable interrupts, use
interrupts().

For both of the button related sketches, we used an external resistor to pull
down the input pin to ground. The ATMega microcontroller has built-in pullup
resistors of 20K Ohm or more. In the case where using the microcontroller's
internal pullups is desired, use pinMode(pin, INPUT_PULLUP) to enable the
internal pullups. Be aware that external circuits on pins with internal pullups
can divide the voltage down under 5V, making the input read LOW.

In review, interrupts provide a way to respond to events with the lowest delay
possible without wasting processor time. Interrupt services routines should be
as short as possible so the sketch can return to executing other code.

37

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Sketch 6: I2C and External Libraries

In this lesson we will cover the I2C serial bus and how to use external
libraries. With some help from libraries, we will make a thermometer with a
digital display.

First let's start with the I2C bus. It is a lower speed serial bus that is used to
connect to peripheral chips over short distances. Its speed ranges from 100
kbit/s to 5 Mbits/s. It can be implemented in hardware or software. I2C
requires two lines, SCL and SDA. SCL carries the clock signal, and SDA
handles the data. It uses a master-slave layout, and a master can
communicate with several slave devices on the same bus.

In depth explanation for how I2C works (you can skip this if you want): Each
slave device has a 7-bit or 10-bit address. The master initiates transmitting
by sending a START signal followed by the slave address. After the address
the master sends a bit to indicate a write (0) or read (1). Then the master
sends or receives data based on the write/read bit. The slave carries out the
complimentary action and then sends an ACK. The master can continue a
transaction of writes or reads by continuing to send bytes or receive them
and sending an ACK back to the slave. The master halts the message with a
STOP signal.

The Uno has a hardware I2C port. Pin A4 also serves as SDA, and Pin A5
handles SCL. To demonstrate I2C in action, let's put together the hardware
for this lesson.

For this lesson, we need the following parts:
 3 or 4 pin DHT11 temperature and humidity sensor

 10k resistor if DHT11 has 4 pins

 1602 LCD with I2C interface (Hitachi HD44780 LCD with PCF8574A I2C
module)

 4 male-female jumper wires, breadboard, 5 male-male jumper wires OR 7
male-female jumper wires (wire components directly to Uno and power the
DHT11 with 3.3V instead of 5V from Uno)

38

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

If using the 4 pin DHT11, wire the components as in this diagram:

Figure 10 4-Pin, I2C Serial Bus Components

For the 3 pin DHT11:

Figure 11 3-Pin, I2C Serial Bus Components

39

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

The schematic with 4 pin DHT11:

Figure 12 4-Pin, I2C Serial Bus Schematic

40

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Schematic with 3 pin DHT11:

Figure 13 3-Pin, I2C Serial Bus Schematic

Let's examine a few of the functions available with Wire.
 Wire.begin(address) - Initiate the Wire library. If the address is given, join

the I2C bus as a slave at that address. If no address, join the I2C bus as
master.

 Wire.beginTransmission(address) - Start transmitting to the I2C slave
device at address.

 Wire.write(value OR string OR data, length) - If device is a slave, write
data to bus in response to master. If device is a master, queue data for
transmission.

 Wire.endTransmission() - Ends transmission to a slave device and
transmits data queued by Wire.write() - This function returns one byte
indicating the status of the transmission.

 Wire.requestFrom(device, length) – used by the master to request the
number of bytes “length” from the address of the device.

 Wire.read() – receives a byte and then the byte is returned by the function.
The byte can be interpreted as a char or int.

 Wire.available() – returns the number of bytes waiting to be read.

41

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Let's examine a sketch using Wire, an I2C scanner. Run the following code
with the Serial Monitor open.

/*
 I2C Scanner
*/
/* 1 */
#include <Wire.h>

/* 2 */
void setup() {
 int deviceCount = 0;
 Serial.begin(9600);
 Wire.begin();
 while (!Serial);
 Serial.println("Beginning scan");
/* 3 */
 for(int address = 1; address < 127; address++) {
 Wire.beginTransmission(address);
 int result = Wire.endTransmission();
/* 4 */
 if (result == 0) {
 Serial.print("I2C device at 0x");
 Serial.print(address, HEX);
 deviceCount++;
 }
 }
/* 5 */
 if (deviceCount == 0) {
 Serial.println("No I2C devices found\n");
 }
}
/* 6 */
void loop() {} //empty loop
/* end */

1 The Wire library is included. The Wire library is already installed
with Arduino IDE.

2 All the code is going into setup(), so it only runs once. The
variable deviceCount stores the number of devices found. Serial
communications is initialized, and the sketch waits for it to be ready.

3 A for-loop cycles through all the possible addresses between 1
and 127. Wire.beginTransmission() and Wire.endTransmission() are
called to get a response from each address.

4 If transmission to an address is a success, the result is printed to
the Serial Monitor, and deviceCount is incremented.

5 If no devices are found, a messages is printed to the Serial
Monitor.

6 No code is inside loop(). loop() will simply run forever doing
nothing after setup() has run the code once.

42

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

The sketch will not find any devices yet if the Uno is not connected to
anything. With the circuit we built above, the sketch should find one device,
the LCD.

Arduino IDE comes with many libraries built-in, but sometimes it is necessary
to install more libraries. Oftentimes libraries are used for device drivers, and
in our case we need drivers for the DHT11 temperature/humidity sensor and
for the 1602 LCD. The 1602 LCD driver is built on the Wire library. Wire
comes with Arduino IDE and provides an easy to use interface for I2C. While
we will not use Wire in the later sketch, the LCD driver we will use is based on
Wire.

Now we need to import two libraries. In Arduino IDE, go to Sketch->Include
Library->Manage Libraries. In the Library Manager, type "SimpleDHT" and
install it. The list of libraries should filter down to a few choices. Next, install
"LiquidCrystal I2C" by Frank de Brabander.

Figure 14 Library Window

43

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

The SimpleDHT library makes using the DHT11 sensor very straight forward.
To use the library, include it with, and then create a SimpleDHT11 object.
Assign a pin for communicating with the sensor. In our case, it is pin 7. Create
two variables for temperature and humidity. Then use the read() function,
with the address of the two variables passed as parameters. A minimal
working program looks like this:

/*
 * DHT11 Demo
 */
#include <SimpleDHT.h>
/* 1 */
byte temperature = 0;
byte humidity = 0;
const int pin = 7;
SimpleDHT11 dht11;

void setup() {
 Serial.begin(9600);
}

void loop() {
/* 2 */
 if (dht11.read(pin, &temperature, &humidity, NULL)) {
 Serial.print("Error reading DHT11.");
 return;
 }
/* 3 */
 Serial.print(String(temperature) + " *C, ");
 Serial.print(String(humidity) + " %");
 delay(5000);
} /* end */

1 Variables for temperature and humidity need to be 8 bits, so the
byte type is used.

2 If there is an error with read(), an error message is printed to
Serial Monitor, and then the return skips execution to the next run
loop.

3 The variables are converted to strings, concatenated with
related text, and then printed to Serial Monitor.

Now let's briefly examine the Liquid Crystal I2C library. First,
LiquidCrystal_I2C object needs to be initialized with the LCD's address, the
number of characters per line, and the number of lines. Here are some
functions that can be used:

 init() - Initializes the LCD driver.

 backlight() - Turns on the backlight LED.

 print(text) - Prints text to the LCD.

44

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

 home() - Returns the cursor to position 0,0 of the LCD.

 clear() - Clears all contents and settings of the LCD.

 setCursor(x, y) - Moves the cursor to the xth position in the line and to the
yth line.

45

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Now let's look at a simple sketch that uses the LCD.
/*
 * 1602 LCD Demo
 */
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

/* 1 */
LiquidCrystal_I2C lcd(0x27,16,2);

void setup() {
 Serial.begin(9600);
 lcd.init();
 lcd.backlight();
 lcd.print("I love Arduino!");
}

void loop() {}
/* end */

1 The LiquidCrystal_I2C object is created and initialized with the address to
0x27, 16 chars, and 2 lines. 0x27 is the address for LCDs with the PCF8574
chip. LCDs with the PCF8574A chip have the address is 0x3F. You should
have seen one of these values with the I2C scanner sketch above. Use 0x3F if
you have the PCF8574A chip.

46

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Now that we have used the DHT11 sensor and the 1602 LCD, let's combine
them to make a thermometer with a display.

/*
 * Digital Thermometer with LCD
 */
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <SimpleDHT.h>

byte temperature = 0;
byte humidity = 0;
const int pin = 7;
SimpleDHT11 dht11;
LiquidCrystal_I2C lcd(0x27,16,2);

void setup() {
 Serial.begin(9600);
 lcd.init();
 lcd.backlight();
}
void loop() {
 if (dht11.read(pin, &temperature, &humidity, NULL)) {
 Serial.print("Error reading DHT11.");
 return;
 }
 string text = String(temperature) + " *C, \n" + String(humidity)
+ " %");
 lcd.print(text);
} /* end */

Now you have experience importing libraries and using them. There is a vast
ecosystem of libraries available for you to use in your projects.

For more information, see these links.
 I2C bus: https://en.wikipedia.org/wiki/I²C

 DH11 Datasheet: https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf

47

https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Using an Arduino In Production

While Arduino is better suited for prototyping, using it in production is viable.
Leveraging the design effort that has gone into the Arduino ecosystem can
save a lot of time and money, but you should be aware of some of the
caveats.

If your company has a problem with using GPL code in production or a similar
issue with other licenses, make sure to audit the libraries your project
includes to make sure they align with business needs. If a license requires
code to be published, that might affect commercial viability of a product.

Another consideration for libraries included in a product is code quality.
Libraries have a wide range of code quality, and so you must determine if the
code you are using is robust enough for production. Some issues, like poor
memory management, might not pop up until the devices has run for an
extended time. Ultimately it is up to you to determine whether or not the
code is suitable for production. The core libraries on the more established
microcontrollers have been battle tested.

Debugging things like memory leaks in sketches by printing to serial can be
arduous, and Arduino IDE only offers this limited debugging method. Atmel
Studio for offers JTAG debugging and can be used with AVR and SAM
microcontrollers. Debugging with JTAG allows you to step through the code
and view memory contents, very useful for debugging. Another alternative
development environment is PlatformIO, which runs on top of Microsoft
VSCode.

Arduino might become too limiting for your application, or Arduino might not
be well supported for the microcontroller in your project. In that case, it might
be preferable to use the native SDK for that chip. The setup() and loop()
structure of a sketch might not suit an application well. If you are fighting the
Arduino architecture or you need to deal with low level details abstracted by
Arduino, maybe using the native SDK is preferable. If there is a possibility of
more complexity being added to the project later, that is something to be
considered. For example, if the code needs to do several different tasks,
perhaps a RTOS (real-time operating system) with native SDK is better suited
for the application.

It is likely you will want to design a custom circuit board for your application.
The designs for all the Arduino boards are public, so they are a good starting
point for your designs. Reusing designs will save time and effort. The same
components from the Arduino boards and shields could be use in custom
circuit board designs to save costs.

48

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

In conclusion, using Arduino in production is feasible, even advantageous, if
your code fits within Arduino's structure and level of hardware abstraction.
It's up to you to determine if the included library code is good enough and
free of legal problems.

49

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Conclusion

In this course we have explored what the Arduino platform is and how to use
it. We have covered digital I/O, analog I/O, serial communication, interrupts,
and using imported libraries. You now have the foundation to make some
gadgets by harnessing all the resources Arduino provides. I hope you have
enjoyed the course and gotten something out of it.

50

	Introduction
	Author Introduction
	Suggested Course Materials
	What is Arduino?
	Arduino Uno and Other Arduino Boards
	Shields
	Arduino Language
	Libraries
	Setting Up the Arduino IDE
	Debugging
	Sketch 1: Digital I/O and Delays
	Sketch 2: Button Debouncing
	Sketch 3: Analog I/O
	Sketch 4: Functions, Random Numbers, and Strings
	Sketch 5: Interrupts
	Sketch 6: I2C and External Libraries
	Using an Arduino In Production
	Conclusion

