
Rapid Electronics Prototyping with Arduino

Arduino Projects: Interfacing with Common
Hardware

By

Benjamin Tyler, PE
PDH4Engineers

September 18, 2022

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Contents
Introduction.. 4

Author Introduction... 5

Note About Source Code In This Course...6

Suggested Course Materials.. 7

Part One – Interfacing with Common Hardware..9

Limit Switch...9

Explanation of Code...12

Thermistor...13

Explanation of code...15

Phototransistor..15

Explanation of code...18

Ultrasonic Sensor Module..18

Explanation of code...20

Servo 20

Stepper Motors..22

Explanation of code...28

RGB LEDs...29

Explanation of code...32

Real-Time Clock (RTC) Module and I2C EEPROM...32

Explanation of code...36

Part 2: Computer-Controlled I/O Device..38

Explanation of code...42

Explanation of code...45

Conclusion... 46

Figure 1: A typical limit switch...9

Figure 2: Wiring diagram for limit switch...11

Figure 3: Thermistor wiring diagram...14

2

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 4: Phototransistor wiring diagram...17

Figure 5: Typical ultrasonic module..18

Figure 6: Ultrasonic module wiring...19

Figure 7: Servo wiring...21

Figure 8: Structure of an H-bridge circuit (in red) driving a DC motor. Image: Cyril BUTTAY [CC BY-
SA 3.0], from Wikimedia Commons...23

Figure 9: Unipolar stepper with center taps tied together...24

Figure 10: 28BYJ-48 coils, from datasheet..25

Figure 11: Stepper motor wiring..26

Figure 12: Common cathode RGB LED..30

Figure 13: NeoPixel wiring..31

Figure 14: DS3231 module..33

Figure 15: DS3231 module wiring...34

Figure 16: Arduino Device Controlled By Computer..38

3

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Introduction

This course provides a practical introduction to controlling common hardware
with Arduino. Arduino is an ideal platform for rapid development of
programmable electronics. Arduino has simplified the software and hardware
aspects of electronics development. The Arduino ecosystem has lots of freely
available and useful libraries that greatly simplify coding your projects.
Additionally, there is a plethora of open, documented development boards
that you can use as a guide for the hardware aspect of your projects. You
leverage all the freely available resources as an engineer to rapidly develop a
working solution.

In this course, we will create several practical projects with Arduino. The first
part of this course focuses on interfacing with hardware like stepper motors,
servos, DC motors, and RGB LEDs. The goal is to give you a working
knowledge of using Arduino with different hardware but not a deep
understanding of the theory behind the hardware. The second part of the
course implements an Arduino controller that communicates via serial with a
host computer. The Arduino controller reads sensors, controls actuators, and
communicates with the host. It essentially operates as dumb I/O for the host.
The computer runs a Python program that controls the flow of the system
logic and processes data.

If you are not familiar with Arduino or have not done much programming
before, I recommend you take the preceding Introduction to Arduino class
first. The previous class covers topics like installing Arduino, installing
libraries, digital and analog I/O, and I2C communication.

4

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Author Introduction

This course has been produced by Benjamin Tyler, PE, who has over 15 years
designing embedded systems, data acquisition and automation systems, and
mobile apps.

5

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Note About Source Code In This Course

Source code for this course is under the “MIT No Attribution” license. Do not use this
code for medical, aviation, or other safety-critical applications. You may use this
code freely, even for commercial applications. License included below:

MIT No Attribution

Copyright 2022 Benjamin Tyler

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

6

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Suggested Course Materials

While this course can be completed without an Arduino board, you will get
much more out of this course if you follow along with one. I recommend the
Arduino Uno, as it is inexpensive and very capable. Furthermore, I
recommend you buy a kit that contains an Arduino board, sensors, and other
components. You can use an Arduino board other than the Uno, but you
might need to make minor changes to the project code. The Arduino
Leonardo board is a great alternative to the Uno, and one advantage it has
over the Uno is that it can function as a USB peripheral. There are a few
places you can buy an Arduino board or kit that includes the board:

 www.arduino.cc

 www.amazon.com

 www.sparkfun.com

 www.adafruit.com

 www.microcenter.com

The following are Amazon affiliate links to suitable kits and parts:

Elego Uno Super Start Kit

Elegoo Uno Complete Starter Kit

Elegoo Complete Uno Starter Kit

Lafvin Super Starter Kit

Adafruit NeoPixel Strip

Disclaimer: PDH4Engineers is a participant in the Amazon Services LLC
Associates Program, an affiliate advertising program designed to provide a
means for sites to earn advertising fees by advertising and linking to
Amazon.com.

Make sure to get the following components, or a kit that contains them:
 Arduino Uno, Leonardo, Zero, Mega, Micro, Nano, etc

 solderless breadboard

 10k Ohm resistor

 220 Ohm resistor (can be up to 1k, does not need to be exactly 220)

 tactile switch

 LED

 ultrasonic sensor

 DS3231 module

7

http://www.adafruit.com/
https://www.amazon.com/Adafruit-NeoPixel-Arduino-Integrated-Drivers/dp/B00IEDH26K/?tag=bxtel02-20
https://www.amazon.com/LAFVIN-Project-Starter-Mega2560-Tutorial/dp/B07CTFVM1L/?tag=bxtel02-20
https://www.amazon.com/ELEGOO-Upgraded-Complete-Tutorial-Compatible/dp/B08C4SK6H3/?tag=bxtel02-20
https://www.amazon.com/EL-KIT-001-Project-Complete-Starter-Tutorial/dp/B01CZTLHGE/?tag=bxtel02-20
https://www.amazon.com/ELEGOO-Project-Tutorial-Controller-Projects/dp/B01D8KOZF4/?tag=bxtel02-20
http://www.microcenter.com/
http://www.sparkfun.com/
http://www.amazon.com/
http://www.arduino.cc/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

 servo

 stepper motor and driver module/ULN2003A H-bridge or similar

 NeoPixel. This probably won’t be included in any of the popular
beginner kits.

8

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Part One – Interfacing with Common Hardware

One of Arduino’s strengths is that it is makes interfacing with hardware very
easy. Usually, all the low level details have been taken care of for you. In this
part we will do several mini projects that interface with common devices
including: limit switches, thermistors, phototransistors, RGB LEDs, servos,
stepper motors, ultrasonic range finders, rotary encoders, and real-time
clocks.

We will use common libraries where possible.

Limit Switch

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• tactile push button switch

• jumper wires

Limit switches are common and often necessary components in motion
control applications. They are placed in a moving part’s path to limit its range
of motion. Limit switches are used for safety, preventing damage to
equipment, and establishing home coordinates for control. Limit switches
come in different form factors that can be triggered by linear or rotational
motion.

 Figure 1: A typical limit switch

9

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

In this mini project, we will use a miniature tactile switch to simulate a limit
switch. Many common limit switches are momentary switches, but they
usually have spade type terminals. We can avoid the fuss of soldering or
using connectors by using a tactile switch you probably already have if you
bought an Arduino kit.

In the previous Introduction to Arduino course, we interfaced with a tactile
switch without a library. Most of the available Arduino libraries for buttons
and switches rely on polling. If your sketch’s loop() runs quickly each loop,
polling is a viable solution. If there is a chance that a loop might take long
enough that it would delay reading the limit switch, using an interrupt on pin
change is a good idea. The ezButton library is a popular library for buttons
and different kinds of switches.

While manually coding buttons is easy enough with Arduino, the ezButton
library makes things… simpler. It takes care of debouncing and setting
pullups. In addition, it is non-blocking and allows the use of multiple buttons.
Install it using the Library Manager in Arduino IDE by going to Tools→Manage
Libraries.

Note that the button in our case will use an internal pullup, so the pin
connected to the button will read HIGH when not pressed and LOW when
pressed.

Some functions in this library include:

ezButton(int pin) – this creates a new instance of the ezButton class for the
pin number passed to it.

setDebounceTime(int time)- this sets the debounce delay for a pin to
prevent it from chattering. If this function is not called, the debounce delay is
automatically set under the hood with a default value.

loop()- must be called each time the main loop in order to update the
button’s state.

getState()- returns whatever the current state is, 1 for logic HIGH or 0 for
logic LOW.

isPressed()- returns true if the button has been press since the last loop.

isReleased()- returns true if released since the last loop.

ezButton can also keep track of the times a number has been pressed.

Please build the circuit below:

10

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 2: Wiring diagram for limit switch

Next, copy/paste or type the following code into the Arduino IDE. Make sure
you have installed the ezButton library. Our code is a contrived example
where we have a hypothetical CNC machine with a milling tool that moves
along a rail. One end of the rail has a limit switch. Pressing the button
simulates the milling tool hitting the limit switch. Don’t read too deep into
hypothetical aspect of the code, as it’s only purpose is to demonstrate
ezButton operation. After uploading code to your board, open the Serial
Monitor.

/* Demonstrate ezButton library for use with limit switches*/

#include <ezButton.h>

// 1

ezButton limitSwitch(8);

bool isToolMoving = true;

bool isToolHome = false;

// 2
11

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

void setup() {

 limitSwitch.setDebounceTime(40);

 Serial.begin(9600);

}

// 3

void loop() {

 limitSwitch.loop();

 if (limitSwitch.isPressed()) {

 Serial.println("Limit switch pressed");

 isToolHome = true;

 isToolMoving = false;

 }

// 4

 if (limitSwitch.isReleased()) {

 Serial.println(“Limit switch released”);

 isToolHome = false;

 isToolMoving = true;

 }

 if (isToolMoving) {

 Serial.println(“Tool is moving”);

 }

 if (isToolHome) {

 Serial.println(“Tool is in HOME position”);

 }

}/* end program */

Explanation of Code

1. An ezButton object is created for the limit switch. Pin 8 is set up as an
input and the internal pullup is set.

2. The limit switch debounce time is set. This might need to be adjust up or
down to prevent bouncing yet not take too long.

3. The loop() method for the limitSwitch object needs to be called each
iteration of the main loop in order to update the switch’s internal state. If a
switch press is detected, a message is printed.

12

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

4. If a switch release is detected, a message is printed.

Thermistor

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• jumper wires

• NTC thermistor

• 10k resistor

Thermistors are resistors that change resistance with temperature, more so
than ordinary resistors. Thermistors can be used as temperature sensors or
as way to limit current. Thermistors are similar to RTDs (resistance
temperature detectors), except that thermistors are made from ceramics or
polymers as opposed to metals in RTDs. There are two types of thermistors:
NTC and PTC. NTC thermistors decrease in resistance as temperatures rise,
whereas PTC thermistors increase in resistance as temperatures rise. This
makes PTC thermistors suitable as current limiters. NTC thermistors have
become popular as temperature sensors due to accuracy being as good as ±
0.1 °C from 0 °C to 70 °C.

Thermistor resistance does not scale linearly with temperature, so the
approximation is calculated using the Steinhart-Hart equation. The
Thermistor library by panStamp takes care of this calculation for you. Install
the Thermistor library in the Library Manager.

For this mini lab, we build a circuit with a voltage divider consisting of a NTC
thermistor and a 10k resistor. The thermistor is 10k Ohms at nominal 25 °C,
and to get better accuracy, use a 1% 10k resistor. For demonstration
purposes, use whatever 10k resistor you have on hand.

Wire your components as shown below:

13

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 3: Thermistor wiring diagram

The Thermistor library is simple to use. You only need to create a Thermistor
object and read from it.

THERMISTOR(uint8_t AdcPin,
uint16_t nominalResistance,
uint16_t betaCoefficient,
uint16_t serialResistor) – this constructs a THERMISTOR

object. Pass in the the nominal resistance at 25 °C, the beta coefficient, and
the resistance of the series resistor.

read()- returns the temperature in increments of 0.1 °C.

14

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Type or copy/paste the code below into Arduino IDE:

/* Thermistor test */

#include “thermistor.h”

THERMISTOR thermistor(A0, 10000, 3950, 10000);

void setup() {

 Serial.begin(9600);

 Serial.println(“Temp in deg C:”);

}

void loop() {

 Serial.println(thermistor.read());

 delay(1000);

}

Explanation of code

This sketch creates the thermistor object and reads from it every second.
Instead of reading the temperature and storing it to a variable, read() is
called inside println(). Storing the value from read() to a variable and printing
the variable is fine, too.

Phototransistor

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• tactile push button switch

• jumper wires

• phototransistor

15

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

In this mini project we interface with a phototransistor. The phototransistor is
a semiconductor device that passes more current proportional to intensity of
light exposure. Before the phototransistor was popular, photocells, or light
dependent resistors, were commonly used for light detection applications.
Photocells are made with cadmium sulfide, so they are not RoHS compliant.

Phototransistors are useful for things that need to detect light levels like
nightlights, street lamps, and cameras. They can also act as a switch when a
known light source shining on the phototransistor is impeded. They tend to
be accurate and have a linear response.

The datasheet for the transistor lists specs for certain conditions, for example
a supply voltage of 5V and a series resistor of 1k Ohms. In darkness, the
transistor might be rated for 100nA, so the Arduino analog input would read a
voltage of 100nA x 1k = 100uV. The Arduino Uno has a 10-bit analog to
digital converter, so each step of the ADC is 5V/1023 (210 – 1 because one
step is at 0) = 4.89mV. So, in darkness, the ADC will read 0, whereas at the
other end in total brightness, the device saturates. At saturation, there will be
a voltage drop of about 0.3V across the transistor. Therefore, the top voltage
reading will be about 4.7V.

Wire the circuit below:

16

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 4: Phototransistor wiring diagram

The code for this is nearly identical to the last mini project. Type or
copy/paste the code below and start the Serial Monitor:

/* phototransistor test */

int reading = 0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 reading = analogRead(A0);

 Serial.print(“The brightness reading is: “);

 Seral.println(reading);

 delay(1000);

17

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

}

Explanation of code

In this sketch, we create a variable to hold the current reading, read from the
analog input, and print the reading value. The raw analog to digital converter
value is use here, but in a real use case it would probably need to be scaled
to lux.

Ultrasonic Sensor Module

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• jumper wires

• ultrasonic module

Ultrasonic sensors are useful for measuring distances up to about 5m for
common low-cost sensor modules. Some typical applications include distance
measurement, object avoidance for robotics, and level sensing.

Figure 5: Typical ultrasonic module

18

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

The ultrasonic modules work by sending a pulse out one transducer and
receiving the reflected pulse in the other transducer. The HC-SR04 is a typical
module used with Arduino. It has max range of 4m and min range of 2cm. It
operates at 40kHz, and the ping it emits consists of an 8-cycle burst.

To use the module, the Arduino first generates a 10 microsecond pulse on the
Trig pin, and then when an echo is detected, the module generates a pulse
on the Echo pin that indicates the distance. The Arduino measures the length
of the pulse from the Echo pin to calculate distance to the object reflecting
the ultrasonic wave. The calculations for distance follow:

pulse round trip time in μs = Echo pin pulse duration

speed of sound = 340 m/s = 0.034 cm/μs

distance in cm = (Echo pulse duration)/2 * 0.034

The Arduino code for the above operations is straightforward enough, but
there is a nice library called Ultrasonic by Erick Simões. Install the library in
the Library Manager. Build the circuit below:

Figure 6: Ultrasonic module wiring

19

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

In our circuit, we have pin 12 hooked up to Trig and pin 13 hooked up to
Echo. Pin 12 is an output, and pin 13 is an input. The Ultrasonic library takes
care of all the hardware setup. To use the Library, create an Ultrasonic object
and run the read() method. We can also specify a timeout period, as reading
in a pulse is a blocking operation, and there might not be an echo if there is
not an object in range and field of view of the sensor.

Type or copy/paste the code below into Arduino IDE:

/* ultrasonic test */

#include <Ultrasonic.h>

Ultrasonic sensor(12, 13, 30000UL);

void setup() {

 Serial.begin(9600);

}

void loop() {

 Serial.print(“Distance in cm: “);

 Serial.print(sensor.read());

 Serial.print(“, inches: “);

 Serial.println(sensor.read(INC));

 delay(2000);

}

Explanation of code

In the above code the timeout is set to 30,000μs which works out to a
distance of about 5m. The UL after the timeout value stands for unsigned
long, which tells the compiler to use the right kind of variable that can hold
larger numbers. The second time read() is called, we pass a constant INC
(declared in the library) to it in order to get a reading in inches.

Servo

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

20

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

• solderless breadboard

• jumper wires

• servo

A servo is a geared motor than can rotate up to 180 degrees. Servos can be
controlled by analog or digital signals. Analog servos tend to be less
expensive, have low frequency audio noise, and have lower power
consumption. However, then tend to be slower, have less torque, lower
resolution (fewer steps), and have a larger deadband. The deadband is the
amount of time a control pulse needs to change in order for the servo to
move. A larger deadband means less precise movement. Digital servos tend
to be faster, more precise, have more torque, and have a smaller deadband.
The enhanced features come with higher prices and higher power
consumption. Since they use higher frequency PWM, they produce higher
pitch audio noise.

A typical servo that comes with Arduino kits is the SG90. It has a stall torque
of 1.6kg/cm and has a deadband of 5μs. It can be controlled by using the
PWM output from an Arduino board.

Wire up the circuit below. Double check the power, ground, and pulse pins, as
they can vary.

Figure 7: Servo wiring

21

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Now let’s create a program that turns the servo all the way back and forth.
The Servo library comes included with Arduino IDE, so it does not need to be
installed. Type or copy/paste the code below:

/* servo test */
#include <Servo.h>

int servoPin = 6;

Servo servo;

void setup() {
 servo.attach(servoPin);
}

void loop() {
 for (int i = 0; i <= 180; i++) {
 servo.write(i);
 delay(20);
 }
 servo.write(0);
 delay(3000);
}

Explanation of code

In this code we set the servo to sweep from 0 to 180 degrees and then finally
reset to 0.

Stepper Motors

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard with power and ground rails

• 6x F-M and 1x M-M jumper wires

• unipolar stepper motor such as 28BYJ-48

• ULN2003 H-bridge chip or break out board

22

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

• power supply module with 9V power adapter OR an alternative power
supply that can source over 500mA

Stepper motors are brushless DC motors that divide each rotation into a fixed
number of steps. The distance traveled in one step is repeatable and only has
a small non-cumulative error. Steppers are rugged, reliable, and precise.
They have high torque at low speeds and at startup. A controller sends pulses
in specific patterns to the motor coils, thereby turning the motor shaft. The
sequence of pulses determines the rotation direction, and the frequency of
the pulses sets the speed. Some steppers can be driven in half steps to give
twice the angular resolution.

To drive the stepper, the Arduino controller sends pulses to an H-bridge that
energizes the motor coils. The motor needs more current than a
microcontroller output pin can provide, so the H-bridge functions like a
voltage-controlled current switch. Inside the H-bridge are high current
transistors arranged such that they can drive a stepper motor in either
direction.

Figure 8: Structure of an H-bridge circuit (in red) driving a DC motor. Image:
Cyril BUTTAY [CC BY-SA 3.0], from Wikimedia Commons

One important feature of steppers is they can be controlled in an open loop.
Provided the stepper is not missing steps, the stepper’s position can be
tracked by counting steps. Sometimes it is preferable to have a home
position for the controller, in which case a mechanical limit switch, optical
sensor, or a Hall effect sensor can be used to detect when a stepper reaches
the home position. A closed loop control that uses a rotary encoder for
feedback tracks position more accurately.

23

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 9: Unipolar stepper with center
taps tied together

A typical unipolar stepper has six wires, with two wires connecting to the coils
at center taps. The tapped coils can act as separate coils, giving a total of
four coils. Bipolar steppers usually have four wires, lacking the center-tapped
wires. Generally speaking, unipolar steppers are easier to control, but bipolar
steppers can generate more torque.

One common stepper motor included with many kits is the 28BYJ-48. It is a
unipolar stepper with the following specs:

• Rated voltage: 5V

• Number of phases: 4

• Stride angle: 5.625°/64

• DC resistance: 50 ±7%(25℃) Ω

• In traction torque: >34.3mN.m

• Friction torque: 600-1200 gf.cm

• Pull in torque: 300 gf.cm

The 28BYJ-48 has gears internally to increase torque and reduce speed. The
gear reduction is specified to be 64:1, but some intrepid hobbyists have
found the exact ratio is about 63.68395:1. Each manufacturer might be
slightly different or have different specified ratios like 16:1 or 32:1.

24

https://en.wikipedia.org/wiki/Omega

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 10: 28BYJ-48 coils, from datasheet

In this mini lab we are controlling a unipolar stepper with a ULN2003A H-
bridge. The ULN2003A has seven channels, each with a Darlington transistor
that can conduct 500mA. Each channel has clamping diodes to protect it from
the back EMF from inductive loads. In order to control a unipolar stepper with
four channels, each of the center-tapped wires is tied to the power supply. To
keep things simple, the stepper will operate in open loop.

Please note that since the motor draws a lot of current, the voltage regulator
chip feeding the motor will get hot. If the regulator and H-bridge do not have
heatsinks, be careful not to run the motor too long.

Build the circuit below:

25

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 11: Stepper motor wiring

If you do not have a power module like in the diagram above, you can wire a
9V battery to the power and ground pins of the ULN2003A driver board or
wire a barrel connector that a wall wart power adapter plugs into.

The sketch for this mini lab uses the Stepper library. It comes with Arduino
IDE, so there is no need to install anything. Some functions we use from the
library include:

Stepper(totalStepsForOneRotation, pin1, pin2, pin3, pin4) – this
constructs a Stepper object that holds that state of the stepper motor. pin1
and pin2 connect to the one coil, and pin3 and pin4 connect to the other coil.
Double check the motor’s wiring diagram to make sure each pair of pins
corresponds to a single coil, not different coils.

.setSpeed(int speed) – this sets the stepper speed in rpm (revolutions per
minute)

.step(int numberOfSteps) – this tells the stepper to step the specified
number of times. A positive number of steps rotates the stepper shaft in one
direction, and a negative number rotates in the opposite direction.

26

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

In this sketch, we send a number of steps over serial, and the Arduino
alternates stepping the motor clockwise and counterclockwise. Type or
copy/paste the code below:

// 1

/* stepper test */

#include <Stepper.h>

#define BUFFLEN 10

const int steps = 64;

const int gearReduction = 32;

const int totalSteps = steps * gearReduction; // needed by Stepper

char inBuff[BUFFLEN]; // holds characters read from serial

int bufferIndex = 0; // index for input buffer

int inSteps = 0; // the number of steps, converted from buffer

char inChar; // holds each individual char read from serial

int clockwise = 0; // rotation direction

Stepper stepper(steps, 8, 10, 9, 11);

// 2

void setup() {

 Serial.begin(9600);

 stepper.setSpeed(200);

 memset(inBuff, 0, sizeof(inBuff));

}

// 3

void loop() {

 if (Serial.available() > 0) {

 inChar = Serial.read();

 Serial.print(inChar);

 if (isDigit(inChar)) {

 inBuff[bufferIndex] = inChar;

27

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

 bufferIndex += 1;

 } else {

 inSteps = atoi(inBuff);

 memset(inBuff, 0, sizeof(inBuff));

 bufferIndex = 0;

 }

 }

// 4

 if (inSteps) {

 if (clockwise) {

 Serial.print("clockwise steps: ");

 Serial.println(inSteps);

 stepper.step(-inSteps);

 dir = 0;

 } else {

 Serial.print("counter clockwise steps: ");

 Serial.println(inSteps);

 stepper.step(inSteps);

 dir = 1;

 }

 inSteps = 0;

 delay(1000);

 }

}

Explanation of code

1. We set up all the variables. Since we are reading from a serial port, we
need a buffer to hold what is read. We have an index and the value the buffer
converts to. The Stepper object takes the total number of steps for one
rotation of the stepper shaft and the pins corresponding to the stepper’s
coils.

28

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

2. In setup, we set the stepper’s speed to 200 rpm, and set all the bytes in
the input buffer to 0 with memset. This has the benefit of automatically null
terminating the sequence of chars read from serial, as well as making sure
the memory does not contain random garbage that could cause an error
later.

3. Inside loop(), if a byte is in the serial port buffer, it is read. To be clear, we
are dealing with two different buffers- one is part of the serial port, and one
we have set up in software to hold all the all the bytes in a message. If the
received character is a number, it is written to the input buffer and the buffer
index is incremented. Eventually a newline or other non-numeric is detected,
and the digits in the buffer are converted to an integer. Then the buffer and
buffer index are reset.

4. If the value for number of steps is nonzero, the servo then moves that
number of steps. The number of steps is reset, and there is a one second
delay.

One thing to note is that there is no error handling performed. Do not cut and
paste this code into something critical.

RGB LEDs

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• jumper wires

Adding colored lights to a project can help convey certain ideas like stop,
warning, or ready, as well as make the project more aesthetically pleasing to
look at. RGB LEDs offer an easy, attractive way to light up a project, and they
can be reconfigured on the fly.

Common four pin RGB LEDs come in two types, common anode and common
cathode. These are controlled by using three PWM outputs to drive the LED’s
red, green, and blue pins. This is straightforward, so we’ll look at a more
interesting kind of RGB LED.

29

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 12: Common cathode RGB
LED

The NeoPixel is an individually addressable and serial-controlled RGB LED
module. There are three parts known as the NeoPixel, including the WS2812,
WS2811, and SK6812. NeoPixels can be daisy-chained and typically come
packaged as a strip of NeoPixels. Only one I/O pin is needed as opposed to
three pins for a four pin RGB LED. One downside is that the refresh rate is
lower than other four pin LEDs, due to the serial protocol of the devices.
There is a small propagation delay for each node that becomes apparent the
more nodes there are in a chain.

The way the protocol works is that each NeoPixel needs 24 bits of data, 8 bits
for each color. The 8 bit byte value can have a value between 0 and 255.
When a pulsetrain arrives at a NeoPixel, it strips off the first three bytes it
receives for itself and then passes through the rest of the pulses. So the
number of bytes needed to control a strip of NeoPixels is N * 3. The bytes are
sent with the most significant digit first. The first byte is green, the second is
red, and the third is blue.

Since the timings for the NeoPixel protocol are tight, libraries for the NeoPixel
have code written in assembly for various microcontroller architectures.

One thing to note is that NeoPixels are stated to support 5V logic, but in
practice 3.3V logic works fine. This course uses the Arduino Uno which has 5V
logic, but most other Arduino boards are 3.3V. If the voltage creates a
problem, then you will need to level-shift the voltage using a chip like the
74AHCT125.

30

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

For this mini lab, install the Adafruit_NeoPixel library. Wire the circuit below.
For demonstration purposes, the circuit uses a strip of NeoPixels from
Adafruit, but it can be a single Neopixel or several Neopixels chained
together in another shape. You might need to solder a pin header to the
NeoPixel board in order to plug it into the breadboard, or solder jumper wires
directly to the NeoPixel board. Make sure you wire to the data input (DIN) pin,
not the data output (DOUT) pin

Figure 13: NeoPixel wiring

Now we will create a sketch that sets each NeoPixel to a random color. Type
or copy/paste the following code into Arduino IDE:

// 1

/* NeoPixel test */

#include <Adafruit_NeoPixel.h>

#define DATA_PIN 6

#define PIXEL_COUNT 8 // number of daisy-chained NeoPixels

#define PAUSE 1000 // time in ms to pause between refreshes

Adafruit_NeoPixel pixels(PIXEL_COUNT, DATA_PIN, NEO_GRB + NEO_KHZ800);

31

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

void setup() {

 pixels.begin();

}

// 2

void loop() {

 pixels.clear();

 for(int i = 0; i < PIXEL_COUNT; i++) {

 pixels.setPixelColor(i, pixels.Color(random(255), random(255),
random(255)));

 pixels.show();

 delay(PAUSE);

 }

}

Explanation of code
1. Here we establish variables for which pin we are using to communicate
with the NeoPixels, how many NeoPixels we have, and how much time to
pause between refreshing the NeoPixel values. Then we create an object
for the NeoPixel strip, and the last two parameters are common
communication settings. See the library documentation on Github for
other settings.

2. The pixels are cleared. Then each NeoPixel in the strip of NeoPixels
has random RGB values written. The pixels are then shown and the loop
delays.

Real-Time Clock (RTC) Module and I2C EEPROM

Parts needed for this mini project:

• Arduino Uno board (or other Arduino board)

• solderless breadboard

• jumper wires

• DS3231 module

Real-time clocks keep accurate time and can use a battery backup for when
the Arduino is off or in low power mode. The RTC can track time to the
nearest second and report back the current year, month, week, day, hour,
and second

32

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Some commonly used RTCs are the DS3231 and DS1307, and many available
modules use one of these RTC chips. In our case, we’ll use the newer
DS3231. Its features include I2C communication, an integrated crystal, two
programmable time-of-day alarms, and a 32.768 kHz square wave output pin.

EEPROM is electrically erasable programmable read only memory. EEPROM is
suitable for persisting data while a device is turned off and for storing data
that is written often, ie an application like datalogging. EEPROM tends to have
more write cycles than flash memory. The AT24C32 is rated for at least
1,000,000 write cycles, whereas flash memory on microcontrollers is typically
rated for around 1,000 write cycles. The AT24C32 EEPROM on the DS3231
module use in this example comes with 32 kB of nonvolatile memory.

Figure 14: DS3231 module

Install RTClib by Adafruit and AT24Cxx by Manjunath, and wire the circuit
below. The Arduino Uno picture does not clearly label its SCL and SDA pins,
but in the top right pin header, the first pin is used for SCL and the second for
SDA.

33

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Figure 15: DS3231 module wiring

Some of the classes and functions we will use from the RTCLib include:

RTC_DS3231() – constructor for a DS3231 object.

.begin (TwoWire *wireInstance=&Wire) – starts I2C communication and
returns true if successful.

.adjust (const DateTime &dt) – sets the date and time for the DS3231.

.now() - returns a DateTime object with the current date/time.

DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour=0,
uint8_t min=0, uint8_t sec=0) – constructor for a DateTime object.

.unixtime() - returns the number of seconds since midnight, January 1,
1970.

There are other useful features like alarms and power failure detection that
are referenced in the docs:
https://adafruit.github.io/RTClib/html/index.htm

Some classes and functions we will use from the AT24Cxx library include:

34

https://adafruit.github.io/RTClib/html/index.html

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

AT24Cxx(uint8_t i2c_address, uin32_t eeprom_size) – creates a serial
EEPROM object at the specified I2C address. The size is in kilobytes.

.read(uint16_t address) – reads one byte from the specified address.

.write(uint16_t address, uint8_t value) – writes one byte to the specified
address.

.update(uint16_t address, uint8_t value) – writes one byte to the
specified address if it is different from the value already stored there. The
purpose is to reduce the number of write cycles to the EEPROM chip.

One thing to keep in mind with this library for reading EEPROM chips: it reads
and writes one byte at a time, so for any data type larger than one byte you
will need to compute how many bytes to read/write. Some other libraries
might make this easier. Something else to be aware of is this library does not
do any error checking. If you accidentally read or write to an address that
does not exist, the library will not tell you.

Now let’s create a simple demonstration for the DS3231. Type or copy/paste
the following code into Arduino IDE:

#include <RTClib.h>

#include <Wire.h>

#define AT24C32_ADDR 0x57

// 1

RTC_DS3231 rtc;

AT24Cxx eeprom(AT24C32_ADDR, 32);

int rom_addr = 31;

void setup() {

// 2

 Serial.begin(9600);

 if (!rtc.begin()) {

 Serial.println(“Error starting DS3231, check wiring”);

 while (true) delay(10);

 }

 rtc.adjust(DateTime(F(__Date__), F(__Time)));

// 3

 int rand = random(255);

 Serial.print(“Random number written to EEPROM: ” + String(rand));

 eeprom.update(, rand) //.write() would also work

35

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

}

// 4

void loop() {

 DateTime time = rtc.now();

 Serial.print(“Seconds since midnight 1/1/1970: ”);

 Serial.println(time.unixtime());

 Serial.print(“Date: “);

 Serial.print(time.month(), DEC);

 Serial.print(‘/’);

 Serial.print(time.day(), DEC);

 Serial.print(‘/’);

 Serial.print(time.year(), DEC);

 Serial.print(“, Time: “);

 Serial.print(time.hour(), DEC);

 Serial.print(“:”);

 Serial.println(time.minute(), DEC);

 Serial.print(“Value from EEPROM: “);

 Serial.println(eeprom.read(rom_address), DEC);

 delay(5000);

}

Explanation of code
1. We create objects for the real-time clock and EEPROM. We set
the EEPROM’s serial address and size in kilobytes, and then the
address in the EEPROM we read and write from. In my test unit,
there was already data in the first 25 bytes of memory, so I
chose to use an memory location a few bytes after the existing
values. I’ve kept everything in decimal format for simplicity,
but it is common to use hexadecimal with memory locations.

2. The real-time clock is started. If there is a problem, the
sketch stalls. Then the DS3231 is adjusted to current time. The
F(__Date__) and F(__Time) macros get the current time while
compiling the code. If a battery is installed, the RTC will keep
the time when the Arduino board is powered off.

3. A random number is generated and then written to EEPROM.

4. In each loop the Arduino reads the DS3231 and then reads the
random number written to EEPROM.

36

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

This concludes the first part of the course. You should now be
familiar with several useful pieces of hardware. Next we will
create the beginnings of a practical application that can
incorporate what we have worked on so far.

37

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Part 2: Computer-Controlled I/O Device

In this project, we will create an Arduino device that can be controlled by
another computer, essentially turning it into a “dumb” I/O device. Often there
is a need to collect data or control things using DAQ or SCADA devices (data
acquisition, supervisory control and data acquisition) in laboratory, industrial
or other environments. Using Arduino for DAQ or SCADA is very convenient,
inexpensive, and quick to implement. Keep in mind that that Arduino is
suitable for quick and dirty applications, but it would be prudent to use a
professional-grade hardware solution if controlling something that could cost
a lot of money or impact safety.

Our system will consist of two main components: the Arduino board with
firmware that reads and executes serial commands, and a computer (PC,
Mac, Linux running on a toaster, etc) that runs a Python script. The Python
program running on the computer will handle all the data processing, control,
and data storage.

38

Figure 16: Arduino Device Controlled By Computer

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

On the computer side, the Python program will run in a loop. Every 10
seconds, the program will tell the Arduino to set the LED brightness to a
random value. Every 20 seconds, the computer will ask the Arduino to read
its ultrasonic sensor. For the sake of simplicity, we will write to a CSV file
instead of a database.

The Arduino will output to an LED and read from an ultrasonic sensor. The
LED is a stand-in for other things you might want to control, like a heating
element, fan, pump, or valve. The ultrasonic sensor is something we used
earlier in this course, so it stands in for an arbitrary sensor you might want to
read. The Arduino will run in a loop that waits for a command on the serial
line. Once a command is sensed, that command is executed, and the result, if
any, is communicated back to the computer. A command frame consists of
three parts:

1. First, the 8-bit char. The command is an alphabetic, one letter command.

2. Optionally, a value for the Arduino to process. It can be variable length.

3. Finally, a non-alphanumeric character is detected, indicating the end of the
command.

For demonstration purposes, our system will perform simple tasks. On the
computer side, we will write data to a CSV file instead of a database.

For this project you need:

• an Arduino Uno board (or any Arduino board)

• solderless breadboard

• jumper wires

• an LED

• 220 Ohm resistor (can be close in value)

• ultrasonic module

Note
View the Arduino language reference here:
https://www.arduino.cc/reference/en/

Build the circuit below:

39

https://www.arduino.cc/reference/en/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Type or copy/paste this in the Arduino IDE:

/* Arduino as external I/O */

#include <Ultrasonic.h>

#define BUFFLEN 10

// 1

const int led = 6;

char inBuff[BUFFLEN];

int bufferIndex = 0;

char inChar;

char cmd = 0; // first byte from command message

int flag = 0; // indicates if done receiving command message

Ultrasonic sensor(12, 13, 30000UL);

void setup() {

 Serial.begin(9600);

 memset(inBuff, 0, sizeof(inBuff));

40

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

}

// 2

void loop() {

 if (Serial.available() > 0) {

 inChar = Serial.read();

 if (isAlphaNumeric(inChar)) {

 if (bufferIndex == 0) {

 cmd = inChar;

 }

 inBuff[bufferIndex] = inChar;

 bufferIndex += 1;

 } else {

 flag = 1;

 bufferIndex = 0;

 }

 }

// 3

 if (flag) {

 switch(cmd){

 case 'l':

 changeLED();

 break;

 case 'u':

 readUltrasonic();

 break;

 default:

 break;

 }

 memset(inBuff, 0, sizeof(inBuff));

 cmd = 0;

 flag = 0;

 }

}

// 4

void changeLED() {

 int value = atoi((inBuff + 1));

 Serial.println(value);

 analogWrite(led, value);

}

41

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

void readUltrasonic() {

 Serial.println(sensor.read(INC));

}

Explanation of code

1. This sketch starts off similarly to the stepper mini lab with setting up
variables for serial communication. This time is a bit different, because each
message consists of a command character and an optional value. The
optional value could be a number or string. In this lab we only use the
optional value as an integer.

2. Each loop, if there is a byte in the serial input buffer, it is read and stored
to a buffer. The first byte read is assumed to be a letter that corresponds to a
command. We are using the letters ‘l’ and ‘u’ to control the LED and read the
ultrasonic sensor.

3. If a finished message flag is detected, process the command. If the
command is not valid, nothing happens. Then the input buffer, command
char, and flag are reset.

4. Functions handle setting the PWM driving the LED and reading the
ultrasonic sensor.

The above code can be tested using the Serial Monitor. Send a ‘u’ to get the
ultrasonic measurement or ‘l’ and a number from 0 to 255 to set the LED
brightness.

Now let’s work on the second part of this project, a Python script that runs on
a computer. If you do not already have Python 3 installed, go to
www.python.org, and install the latest version of Python 3. Next you need
to install Pyserial. Using the terminal in Mac OS or Linux and the command
prompt in Windows, type and run:

42

http://www.python.org/

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

python3 -m pip install pyserial

See
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation if
there are any installation issues.

Once you have installed Pyserial, open IDLE, the Python shell, and type:

import serial

If there is no error, Pyserial has install properly. Next we need to find the
serial port your Arduino board is using. You can either check in Arduino IDE or
by running a command line too. In Arduino IDE, go to Tools→Port, and note
what the port is. Alternatively in your system’s terminal or command shell,
run:

python3 -m serial.tools.list_ports

Your serial port will look something like “/dev/ttyACM0” in Mac
OS or Linux and “COM1” in Windows. Make sure the Arduino Serial
Monitor is not still connected before running the code below.

Next, in IDLE, click File and New File. Type or copy/paste the following code.
Take care to keep the indentations consistent, since Python cares about
spacing.

// 1
import serial

import time

import csv

import random

import threading

exit = threading.Event()

43

https://pyserial.readthedocs.io/en/latest/pyserial.html#installation

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

ser = serial.Serial('/dev/ttyACM0', 9600) # substitute your serial port

// 2

def setLED():

 rand = random.randint(0, 255)

 print('setting LED to: ' + str(rand))

 msg = bytes('l' + str(rand) + '\n', 'utf-8')

 ser.write(msg)

// 3

def getUltrasonic():

 ser.write(b'u\n')

 distance = str(ser.readline(), 'utf-8').rstrip('\r\n')

 print('ultrasonic sensor value in inches: ' + distance)

 with open('demo.csv', 'a', newline='') as f:

 writer = csv.writer(f)

 writer.writerow([time.ctime(), distance])

def quit(signo, _frame):

 exit.set()

def main():

 print('Press ctl-c to stop')

// 4

 while not exit.is_set():

 setLED()

 exit.wait(5)

 getUltrasonic()

 exit.wait(5)

 print("Wrapping up")

 ser.close()

// 5

if __name__ == '__main__':

 import signal

 for sig in ('TERM', 'HUP', 'INT'):

 signal.signal(getattr(signal, 'SIG'+sig), quit);

 main()

44

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Explanation of code

1. First we include all the necessary libraries. We use the threading library to
handle time delays and exit from a while loop. Explaining threads is beyond
the scope of this course, but threads make the code easier to use. Then we
create a serial port object with the name of the port and the connection
speed. Substitute your serial port into the serial object constructor.

2. This function controls the LED. It generates a random number, and then a
string is formed by combining the letter ‘l’, the random number, and a
newline, ‘\n’. The string is then converted to an array of bytes, as the serial
library only transmits and receives the byte type.

3. This function queries the ultrasonic sensor. We send a command ‘u\n’, and
read bytes that we convert to a string. The readline function appends a
carriage return and newline, so we strip those off the string with rstrip. Next
we open a file in append mode and create a csv writer from the file handle.
The writer then can append a row containing the date and sensor value.

4. The quit function and exit.is_set have to do with the threading library and
how the program handles interrupts. We use a keyboard interrupt to get out
of a for loop. The for loop calls setLED and getUltrasonic, each separated by a
5 second delay. Press control-c to exit this loop. Using threading for the
delays instead of timer delays allows us to exit from the while loop quicker.

5. The final part of this program is a Python pattern. If the script, or module,
is run by itself, then the code in the if statement runs. If the module is
imported by another module, the code in the if statement does not run. This
lets a module run as a standalone program or as part of another program.

45

PDH4ENGINEERS.com

Rapid Electronics Prototyping with Arduino Introduction to Arduino

Conclusion

In this course we have explored interfacing several common hardware
components with Arduino. In the second part of the course, we made a
practical project that could incorporate any of the hardware we covered.

Thank you for taking this course. I hope you got some value from it. Feel free
to email any feedback you have.

46

	Introduction
	Author Introduction
	Note About Source Code In This Course
	Suggested Course Materials
	Part One – Interfacing with Common Hardware
	Limit Switch
	Explanation of Code
	Thermistor
	Explanation of code
	Phototransistor
	Explanation of code
	Ultrasonic Sensor Module
	Explanation of code
	Servo
	Stepper Motors
	Explanation of code
	RGB LEDs
	Explanation of code
	Real-Time Clock (RTC) Module and I2C EEPROM
	Explanation of code

	Part 2: Computer-Controlled I/O Device
	Explanation of code
	Explanation of code

	Conclusion

